Coral Reefs and Phenotypic Plasticity: Responses to a Changing Climate

Introduction

Coral reefs are known as pristine locations, and the ability of the coral making them up to create environments supporting myriads of fish species is astounding. Comparisons between corals ability to create a niche for complex and diverse ecosystems has been compared to that of rain forests on land, with almost a third of marine fish being found, despite covering less than 1% of the ocean bed  (Adey 1998). In fact, many of the species that live within these reefs owe survival to coral health (Komyakova et al 2013). However, the home of Nemo and Ariel has been under recent threat over the years, due to climate change and ocean acidification (Hoegh-Guldberg et a. 2007). Just this last year alone, the great barrier reef saw the worst coral bleaching, thanks to rising water temperatures (Griffith 2016).  While exploration of ways to change the impact we are having on corals, and therefore the impact on the reefs ecological webs as a whole, interest has also developed in what the corals responses to these changes in their environment have been (Putnam et al. 2016). The value of this data provides an extreme example of phenotypic plasticity, the ability of an organism to respond to its environmental conditions. Continue reading “Coral Reefs and Phenotypic Plasticity: Responses to a Changing Climate”

Great Tits and Climate Change: An Experiment to Transform Current Prediction Models

 

Great tit feeding on caterpillar. Credit Kateimi Flickr user.

Background:

Timing is everything for bringing new life into the natural world. Every year, species such as the great tit (Parus major), one of the many song birds found on the British Isles, rely on abundant food to be able to provide enough nutrients for their growing young. The presence of this food is the result of a large cascade–like a line of dominos–that begin with the smallest of microorganisms responding to environmental factors such as temperature and salt concentration. If the timing of one of these falling dominoes is slightly off, many organisms further down the line suffer and may be unable to find food at the most critical times of early offspring growth. Two particular organisms that share the same line of dominoes as the great tit are the pendunculate oak (Quercus robur) and the various caterpillars which feed on the oak’s leaves. [3] Continue reading “Great Tits and Climate Change: An Experiment to Transform Current Prediction Models”

Inheritance of personality: How much do genes matter?

Picture of meerkats
Extremely social animals like meerkats may benefit from specializing in particular social roles to avoid social conflict, which could create distinct personalities that may persist through time (Carter et al. 2014) Photo credit: © anekoho / Fotolia

Personality. All individuals have one. Yet, what actually contributes to individuality? Although seemingly simple, personality frustrates evolutionary biologists due to its complex and convoluted nature. It is well established that personality can have important evolutionary implications (1, 2, 3, 4, 5), but determining a method to test the genetic underpinnings of personality has proven difficult. Continue reading “Inheritance of personality: How much do genes matter?”