Type II diabetes mellitus is increasing at an alarming rate, especially in children. According to the World Health Organization (WHO) statistics, the number of individuals with type II diabetes is projected to rise to more than 590 million by the year 2035 (Diabetes, 2017 and Upadhyaya, 2015). Type II diabetes is the result of the body’s resistance to insulin, a hormone that regulates blood sugar. The WHO states that type II is largely the effect of being overweight and very little exercise. Type I diabetes is distinguished by the bodies inability to produce insulin and there is no way to prevent it. Symptoms of type II diabetes include thirst, constant hunger, weight loss, vision loss, numbness in feet, and tiredness (Diabetes, 2017). Scientists are trying to discover new ways to mediate the effects of type II diabetes and many think that the gut microbiota of the human body might correlate with diabetes in an interesting way. Continue reading “Association Between The Human Microbiota and Type II Diabetes Mellitus”
Do the microbes in your gut affect cognitive and behavioral development?
Background
Neuronal development is especially critical in adolescent years (Paus, 2005; O’Connor & Cryan, 2014). Consequentially, this time is also when doctors see the onset of mental illness and behavioral abnormalities that include, but are not limited to, anxiety and mood disorders (O’Connor & Cryan, 2014; Paus, Keshavan & Giedd, 2008). The causal relationships of these atypical behaviors that are seen in mental illness have long been debated. Some scholars believe deficient diets lead to cognitive and short-term memory disabilities (Bondi et al, 2014), whereas others suggest that errors in the human genome could affect brain development and induce mental illness (Guo et al, 2009). In recent years, researchers have brought forward the idea that the microbes in our gut could influence the development of our brain. Continue reading “Do the microbes in your gut affect cognitive and behavioral development?”
Depression and Microbial Dysfunction: A Link Between Gut Microbiota and the Brain.
Background
Depression is a mood disorder that is heterogeneous in nature. Depression causes severe symptoms that affect how a person feels, thinks, and handles daily activities (NIMH, 2017). According to the World Health Organization, depression affects over 300 million people and is a major worldwide contributor to the burden of diseases. This is especially pertinent considering that depression is one of the mood disorders associated with suicide, some others being anxiety, schizophrenia and PTSD. On an annual basis suicide leads to the death of nearly 800,000 people and is the second leading cause of death within the age group of 15 to 29 year olds (WHO, 2017). The underlying causes of depression are a complex interaction of social, psychological, and biological factors. It is essential to analyze these factors to understand the contribution of each in the development and maintenance of major depressive disorders. Continue reading “Depression and Microbial Dysfunction: A Link Between Gut Microbiota and the Brain.”
The Human Salivary Microbiome: Where the environment trumps genetics
Background
Genetics and the environment; how do these interact? Do they always interact, or do genetics sometimes overrule characteristics learned from our environment? The question of nature, generally thought of to be our genetic make-up, versus nurture, the environments we’re exposed to in our developmental years, has been the topic of debate by scientists and philosophers for centuries. Yet, the definitive answer still frustratingly eludes us. Some things, like the number of limbs we’re born with, are entirely decided by genetic factors. Other things, like many of our behaviors, rely on an interaction between genetics and developmental environment. Continue reading “The Human Salivary Microbiome: Where the environment trumps genetics”
Artificial Sweeteners: The Sour Alternative
Artificial sweeteners were a great idea in the fight against sugar consumption. Excessive amounts of sugar come with consequences such as obesity, inflammation, cardiovascular problems and more. Finding an alternative was a must. Enter artificial sweeteners, also called non-nutritive sweeteners or sugar substitutes. These low and zero-calorie substitutes allowed us to keep eating sweets without having to worry about the consequences. They replaced sugar in many snacks and drinks and kept us all happy.
Originally seen as a godsend by many health-minded individuals, including doctors who recommended it for weight-loss in patients with type 2 diabetes (Suez, 2014), this seemingly healthy alternative may not be as great as the hype accompanying it. Continue reading “Artificial Sweeteners: The Sour Alternative”
Coral Reefs and Phenotypic Plasticity: Responses to a Changing Climate
Introduction
Coral reefs are known as pristine locations, and the ability of the coral making them up to create environments supporting myriads of fish species is astounding. Comparisons between corals ability to create a niche for complex and diverse ecosystems has been compared to that of rain forests on land, with almost a third of marine fish being found, despite covering less than 1% of the ocean bed (Adey 1998). In fact, many of the species that live within these reefs owe survival to coral health (Komyakova et al 2013). However, the home of Nemo and Ariel has been under recent threat over the years, due to climate change and ocean acidification (Hoegh-Guldberg et a. 2007). Just this last year alone, the great barrier reef saw the worst coral bleaching, thanks to rising water temperatures (Griffith 2016). While exploration of ways to change the impact we are having on corals, and therefore the impact on the reefs ecological webs as a whole, interest has also developed in what the corals responses to these changes in their environment have been (Putnam et al. 2016). The value of this data provides an extreme example of phenotypic plasticity, the ability of an organism to respond to its environmental conditions. Continue reading “Coral Reefs and Phenotypic Plasticity: Responses to a Changing Climate”
Attractive Dads Make Poor Parents
An overview of Alissa et al. (2017)
The debate over parental responsibility is a contentious one in our human society. Who should get parental leave? Whose responsibility is child protection and education? Such questions are often aimed at trying to get men more involved in the caring of a child or to split responsibility more evenly between two parents. Who would have thought that similar questions are being asked about spider societies?
It turns out that those intriguing 8-legged creatures that have plagued people’s nightmares and inspired fantasy from Charlotte’s Web to Harry Potter, also have very complex family dynamics. For most wild creatures the main purpose in life is to reproduce as successfully as possible. Thus, in some species, such as the harvestman spider, Serracutisoma proximum, investigated by Alissa et al. (2017), we see a trade-off between energy and time investment in mating effort and offspring care. Continue reading “Attractive Dads Make Poor Parents”
The Gut Microbiome; a Battleground Between Pathogens and the Host/Gut-Residents
Background
A unique and diverse array of inter-specific relationships can be found within the microbiome of the human gut. Due to the constant flow of microbe-carrying nutrients through it, the gut is subject to a high risk of foreign invaders. Fortunately the immune system, as well as the digestive tract (with the help of its residential microbes), have processes to rid themselves of the pathogenic strains (Ichinohe et al, 2011). These bodily systems provide a unique example of positive interactions between co-existent, and co-dependent, systems. Although the body can protect itself from damage induced by invading species, certain medical diseases such as inflammatory bowel disease (IBD) and Crohn’s disease (CD), when combined with inflammation and intestinal distress are prone to exhibit symptoms such as “severe muscle wasting and fat loss’ (Schieber et al 2015). Although the gut biome and the immune system may not always be capable of preventing these resultant health issues on their own, in conjunction they are capable of properly defending the body from muscular wasting caused by pathogenic effects.
The intestinal tract, while utilizing physical and chemical forces to break down and absorb vital nutrients, also houses a diverse community of microorganisms, a microbiota. This microbiota, which aids in increasing efficiency in digestion and absorption, is the product of coevolution and tolerance within both the host (providing this environment) and the residential microorganisms (Schieber et al 2015). Continue reading “The Gut Microbiome; a Battleground Between Pathogens and the Host/Gut-Residents”
The Chronicles of Evolutionary Weight in the Fight Against Cancer
Background
“Dad, you have to try it, don’t you?’ Mary insists again.
Enrique doesn’t answer his daughter. What she’s implying will make him spend even more time in the hospital, to help someone in the distant future whom he will never meet, maybe. When he was 70, Enrique was diagnosed with acute myeloid leukemia (AML). As he understands it, some of his blood cells will never mature and perform the correct functions in his body. This cancer can be cured through chemotherapy in 25% of cases, but in most cases cannot be treated or reversed (Kornblau 2014). Enrique is contemplating joining a drug trial. In any given trial there is only a 10% chance that a patient will respond to the specific drug tested (Kornblau 2014). Some therapeutic drugs work for some patients, but how to match a patient to a drug is unknown; this is what the study Enrique might join is trying to figure out. Continue reading “The Chronicles of Evolutionary Weight in the Fight Against Cancer”
Lonely at the Top: isolated mountain tops served as ice age refugia
Nebria is a genus of flightless beetle found in montane alpine habitats, sometimes at altitudes over 3,000m. Nebria have special adaptations, such as anti-freeze enzymes, which allow them to thrive on snowy mountain tops where other insects could not. In fact, Nebria feed upon arthropod fallout, insects which are blown to high altitudes and become immobilized on the cold snow. These same cold-tolerant adaptations may prevent them from surviving at lower altitudes (Lohse et al. 2011). As a result, their mountain top homes act like isolated “sky islands.’ Dispersing between sky islands is challenging when you can’t fly. Continue reading “Lonely at the Top: isolated mountain tops served as ice age refugia”