Make More Friends: It’s Good For Your Gut

It is currently estimated that the number of bacterial cells in our body roughly matches or exceeds the number of human cells, with the majority of these bacteria residing in the gut (Sender, et. al 2016). You may be familiar with literature identifying a “gut-brain” axis, i.e. a relationship between mental health and the composition of our microbiota. Studies have shown correlations between bacterial community makeup and disorders such as autism, depression and schizophrenia (Foster & Neufield 2013), (Dickerson, et. al 2017). Bacterial disbalance has also been correlated with diseases such as diabetes and obesity (Hartstra, et. al. 2014). A common factor between these disorders is that they are generally associated with lower microbial diversity.  While there is a growing body of literature supporting the relationships between disease and dysbiosis, a perturbation of the microbial community, little research has explored the relationships between personality and patterns in variation of the healthy microbiome.

Artwork by Anna & Ellen Balbusso

Enter Dr. Katrina Johnson of Oxford, who is especially interested in understanding how microbiota help to create the spectrum of human personality in the general population. To measure variation in personality, Johnson uses the “The Big Five” inventory which measures variation in personality using the following measures:  Continue reading “Make More Friends: It’s Good For Your Gut”

From Microplastics to Microorganisms

Background

Over the last decade, plastic has become a more and more concerning source of pollution. In 2013 alone, almost 300 million pounds of plastic were produced worldwide (Lu et al 2017)Microplastics are defined as any plastic particle smaller than 5mm in diameter. Microplastics have been well documented as health concerns for marine life as more plastic accumulates in the ocean than any other place on earth. Additionally, microplastics have been found in a variety of household products including toothpaste and cosmetic products. We are just beginning to understand the extent microplastics have infiltrated our environment as well as our bodies, let alone the health risks they pose. One area of study deserving attention is the effect these plastics have on the microbiome of an organism. A microbiome is all of the bacteria, fungi, and viruses that live within or on a specific organism. Some of these microorganisms provide essential services to their host and maintaining a healthy microbiome has been tied to overall organismal health. Past studies have linked altered microbiomes to everything from obesity (Ridura et al 2013) to asthma (Stein et al 2016) Continue reading “From Microplastics to Microorganisms”

Could Your Body’s Bacteria be the Reason You’re Proven Guilty of Murder?

Background

 Many studies on human microbiomes have demonstrated the great interpersonal variability of microbial communities, as well as the potential for specific aspects of the microbiome to uniquely tie to an individual. The significance of this study lies both in criminal forensic applications, as well as in privacy concerns for individuals that participate in microbiome research studies. Despite criminal forensic’s history of personal identification through fingerprints, DNA, and blood type, there have been no real efforts to establish microbial data as a method of personal identification.

Image retrieved from “The Scientist” news post: “Who Are We Really?” by Kieran Doherty

The scientific community has already begun brainstorming how microbial data could be leveraged for forensic use. Using knowledge on how an individual’s microbiota changes depending on diet, lifestyle, medication, and pathology, forensic analysts may be able to trace suspects from their bacterial sheddings at a crime scene. Even without direct identification, the aforementioned lifestyle information could assist in apprehension of an assailant (Hampton-Marcell et al. 2017). This study’s purpose is to investigate the capabilities of “fingerprinting” individuals using their microbiome. Microbial fingerprinting (MF) will be defined as using a set of microbial data to trace and identify a unique individual from a larger population. The benefits of microbial fingerprinting in forensics would be numerous, allowing for suspect identification when human DNA is not usable. This pro to microbial fingerprinting comes from the resilience of bacterial DNA; it is not as easily destroyed as human DNA (Nema 2018).  While researchers in the past have used metagenomic shotgun sequencing to identify microbial populations, they found that increases in data set size decreased efficacy for this profiling method. (Segata et al. 2012). For this reason, this study uses a method described in a publication from Segata et al. (2012), where clade-specific marker genes are used to identify microbial clades in larger data sets. Continue reading “Could Your Body’s Bacteria be the Reason You’re Proven Guilty of Murder?”

What’s that smell? Uncovering the mechanisms and bacteria behind body odor in pre-pubescent children and teenager

Background:

Body odor is a biological process that affects all humans. Many animals have scent glands and body odors that serve different purposes, and humans are no different. It is believed that human body odors might signal familial recognition and communication regarding sexual attraction and reproduction (Hoover, K. 2010). While some human-produced scents may be inoffensive or appealing at best, others are found to be entirely unpleasant (body malodor). These unpleasant aromas are created through interactions between the microbes that live on our skin and substances created by our bodies. Metabolic pathways facilitated by our skin bacteria result in the breakdown of lactic, acetic, and other acids that leave our bodies through sweat, which, by itself, is odorless (Barzantny, H. et al 2011).

Continue reading “What’s that smell? Uncovering the mechanisms and bacteria behind body odor in pre-pubescent children and teenager”

The changing microbiome in cystic fibrosis: a key to diagnosis and treatment?

Background

Monogenic disorders are estimated to affect 1/100 people at birth (WHO). They are caused by individual mutations in individual genes that result in non-functional products such as RNA molecules or proteins. In the case of cystic fibrosis (CF), a mutation in an ion-transport protein causes CF patients to have thick, sticky mucus that easily traps bacteria, viruses and other contaminants that can cause disease. Thick mucus is particularly an issue in the lungs where trapped microbes can lead to lung inflammation and infection (Cystic Fibrosis Foundation). In healthy individuals, microbes are not uncommon in the upper and lower respiratory tracts. Usually, microbes are eliminated by little hairs that sweep microbes trapped in free-flowing mucus up and out of the respiratory tract to be coughed up or swallowed (Huffnagle et al., 2016). However, in CF patients thick mucus limits this elimination of microbes, trapping them in the lungs and respiratory tract (Fig. 1). 

Figure 1. Comparison of the healthy vs. diseased airway. Buildup of mucus in cystic fibrosis patients changes the respiratory tract environment, allowing pathogens to proliferate. (Huffnagle et al., 2016)

Continue reading “The changing microbiome in cystic fibrosis: a key to diagnosis and treatment?”

Leafy Greens and Friends: who’s hangin’ out on your lettuce?

Image of a healthy vibrant-green head of lettuce with water droplets on it.
Image of a lettuce head from https://pixnio.com
Background:

To the general public, the idea that there are tiny organisms living all around (and inside) of us might be a scary concept. Naturally, if all the news you get on a regular basis is concerning the totally-terrifying E. Coli that can give you food poisoning, or that fiendish-foe influenza–it’s not surprising that people often have negative reactions to the term “microbe.’ The reality is that we’re mostly made up of microbes, we encounter them every day, and most of the time they’re harmless or even beneficial! In fact, we often use microbes to ferment sugars so we can make things like yogurt and bread, and just as we use these microbes for our own benefit–plants can do the same! Continue reading “Leafy Greens and Friends: who’s hangin’ out on your lettuce?”

Microbial interactions with eczema: is your fungal community irritating you?

BACKGROUND OF ECZEMA:

The skin is our largest organ and plays an important role in our health and well being. One key role of our skin is preventing infections by acting as a physical barrier to pathogens and secreting antimicrobial enzymes in our sweat (Parham, 2015). However, whether from genetic or environmental factors, sometimes this defense system goes wrong.

Skin lesions caused by eczema (WebMD)

Eczema is an umbrella term for a group of diseases that result in the inflammation of the skin (atopic dermatitis or AD). According to the American Academy of Dermatology, AD is a common skin disease in children, affecting up to 20% (American Academy of Dermatology, 2018). Most kids grow out of the disease, but somewhere between 10 and 30% do not (Eichenfield et al., 2014). Continue reading “Microbial interactions with eczema: is your fungal community irritating you?”

How Does Your Microbe Community Change During Pregnancy?

Background

The vaginal microbiota undergoes major compositional changes throughout a women’s lifespan from birth, to puberty, to menopause. However, very little is known about the composition of the vaginal microbiota throughout these transitional stages (Romero 2014). So if the microbial community of the vagina changes throughout a women’s life, how does pregnancy change it, if it does at all? Continue reading “How Does Your Microbe Community Change During Pregnancy?”

The Connection Between Our Personalities and Our Gut Microbes

Image provided by vrx/Shuttestock via Shape.

Background

Personality, according to the American Psychological Association, refers to “individual differences in characteristic patterns of thinking, feeling, and behaving’. In short, it’s what makes us us, what makes me different from you. It shapes how we process and understand our individual lives and all the nuances they bring, and in turn those experiences also shape our personality.

Though it may have seemed obvious, there have been recent findings that personality could play a larger role than we may have thought in determining an individual’s health. For example, Youyou et al found computer-based personality judgements could predict an individual’s physical health or even if they’re more prone to substance use (Youyou et al 2015). Continue reading “The Connection Between Our Personalities and Our Gut Microbes”

Attention Deficit in Teenage Boys: Who Would’ve Guessed?

A Brief Background

Attention Deficit Hyperactivity Disorder, also known as ADHD, is one of the most prevalent psychiatric diseases in childhood adolescence across the globe (Polanczyk et al, 2005). Children with ADHD find difficulties with their inattention, hyperactivity, and/or inability to control their impulses. These lifelong symptoms are caused by numerous neurotransmitter systems and various brain functions. Prenatal conditions such as low birth weight, prematurity, and prenatal exposure to alcohol and/or other toxins are external risk factors. The socioemotional environment during postnatal development and food constituents/micronutrients can also contribute to ADHD symptom severity (Capusan et al, 2005). There are many risk factors in early development associated with ADHD, such as delivery method, gestational age, type of feeding, maternal health, and early-life stressors, all of which have an effect on the gut microbiota of patients with ADHD. Continue reading “Attention Deficit in Teenage Boys: Who Would’ve Guessed?”